Electronic structure of BiMO₃ multiferroics and related oxides

J. A. McLeod,^{1,*} Z. V. Pchelkina,^{2,†} L. D. Finkelstein,² E. Z. Kurmaev,² R. G. Wilks,¹ A. Moewes,¹ I. V. Solovyev,^{2,3}

A. A. Belik,⁴ and E. Takayama-Muromachi⁴

¹Department of Physics and Engineering Physics, University of Saskatchewan,

116 Science Place, Saskatoon, Saskatchewan, Canada S7N 5E2

²Institute of Metal Physics, Ural Division, Russian Academy of Sciences, 620990 Yekaterinburg, Russia

³Computational Materials Science Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan

⁴International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS),

1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

(Received 9 October 2009; revised manuscript received 3 February 2010; published 9 April 2010)

We have performed a systematic study of the electronic structures of the Bi MO_3 (M = Sc, Cr, Mn, Fe, Co, Ni) series by soft x-ray emission (XES) and x-ray absorption (XAS) spectroscopy. The band gaps were estimated for all compounds in the series. For BiFeO₃, a band gap of ~0.9 eV was obtained from the alignment of the O $K\alpha$ XES and O 1s XAS. The O 1s XAS spectrum of BiNiO₃ indicates that the formation of holes was due to a Ni²⁺ valency rather than a Ni³⁺ valency. We have found that the O $K\alpha$ XES and O 1s XAS, probing partially occupied and vacant O 2p states, respectively, are in agreement with the O 2p densities of states obtained from spin-polarized band-structure calculations for all Bi MO_3 compounds addressed herein. The O $K\alpha$ XES spectra show the same degree of Bi 6s-O 2p hybridization for all compounds in the series. We speculate herein that the stereochemical activity of the Bi 6s lone pairs must be supplemented with inversion symmetry breaking to allow electric polarization. For Bi MnO_3 and Bi FeO_3 , two cases of multiferroic materials in this series, the former breaks the inversion symmetry due to the antiferromagnetic order induced by particular orbital ordering in the highly distorted perovskite structure and the latter has rhombohedral crystal structure without inversion symmetry.

DOI: 10.1103/PhysRevB.81.144103

PACS number(s): 71.20.Gj

I. INTRODUCTION

Multiferroics, materials which were discovered almost 50 years ago,^{1,2} simultaneously possess two or three degrees of freedom: (anti)ferromagnetism, (anti)ferroelectricity, and/or ferroelasticity. This combination allows both charges and spins to be manipulated by applied electric and magnetic fields.^{3,4} These materials are promising for various technological applications such as information storage, spintronics, and sensors. There are many different classes of multiferroic systems known today, for instance, the RMnO₃ family (R=Dy, Tb, Ho, Y, Lu, etc.), the RMn_2O_5 family (R=Nd,Sm,Dy,Tb), and the Bi MO_3 family (M=Mn,Fe). These materials have complex structures with many atoms per formula unit, and more than one formula unit per unit cell. The large number of interatomic interactions makes distinguishing the mechanisms responsible for multiferroicity a challenging task. The origin of these phenomena and the nature of the coupling between the magnetic, electric, and structural order parameters are not well understood.

For the wide class of transition-metal perovskites, it was determined that magnetism and ferroelectricity seem to exclude one another (for review, see Refs. 5 and 6). In conventional ferroelectric perovskites, the transition-metal ion has d^0 electron configuration and such systems are nonmagnetic. The compounds having electrons in a *d*-shell may be magnetic but they are not ferroelectric. BiFeO₃ and BiMnO₃ are multiferroics and are exceptions to this rule. Multiferroicity in these two materials does not break the general "exclusion" rule for perovskites, however. The ferroelectricity in these systems has different source than that in most perovskite

ferroelectrics, such as BaTiO₃. The driving force for the instability leading to the ferroelectricity in these two cases is the so-called lone pairs of Bi³⁺ ion. The role of lone pairs, ns^2np^0 electron configuration, in such system as SnWO₄, PbWO₄, BiVO₄, and BiMnO₃ were addressed in detail in Refs. 7 and 8. The presence of lone pairs leads to an offcentric displacement of the cation from the centroid of it coordination polyhedron. Such asymmetric local environment induces dipoles and give rise to ferroelectricity. For SnWO₄, it was shown that the lone-pair distortion leads to a significant increase in the Sn 5s-O 2p bonding interaction. The same tendency was found for BiVO₄.⁷ This investigation revealed that the stereochemical activity of the lone pairs is exhibited by raising of a cation ns-O 2p bonding interaction. This evidence could be useful for experimental and theoretical analysis of multiferroics and related compounds.

In the present paper, we have performed a systematic study of the electronic structure of the perovskitelike multiferroics (BiFeO₃ and BiMnO₃) and the Bi MO_3 (M =Sc,Cr,Co,Ni) related compounds using synchrotron excited soft x-ray emission and absorption spectroscopy. Despite many electronic-structure calculations (see review article Ref. 9, and references therein), only a few experimental spectra for selected compounds (YMnO3 and BiFeO3) have been obtained so far.^{10,11} This could be partially connected with the difficulties in preparing the high-quality samples of these materials which require the high-pressure synthesis. The experimental spectra are compared with specially presented electronic-structure calculations. We also analyze the Bi 6s-O 2p hybridization for the compounds in the series as the possible manifestation of the stereochemical activity of the lone pairs.

	BiScO ₃	BiCrO ₃	BiMnO ₃	BiFeO ₃	BiCoO ₃	BiNiO ₃
Space group	C2/c	C2/c	C2/c	R3c	P4mm	$P\overline{1}$
a, (Å)	9.8899(5)	9.4641(4)	9.5415(2)	5.58102(4)	3.71990(7)	5.3852(2)
b, (Å)	5.8221(3)	5.4790(2)	5.61263(8)	5.58102(4)	3.71990(7)	5.6498(2)
c, (Å)	10.0462(5)	9.5850(4)	9.8632(2)	13.8757(2)	4.71965(15)	7.7078(3)
α , (deg)	90	90	90	90	90	91.9529(10)
β , (deg)	108.300(3)	108.568(3)	110.6584(12)	90	90	89.8097(9)
γ , (deg)	90	90	90	120	90	91.5411(9)

TABLE I. Crystal structure and lattice parameters for BiMO₃ compounds.

The paper is organized as follows: the details of sample preparation and soft x-ray measurements are presented in Sec. II. The crystal structure of different compounds and their basic properties are summarized in Sec. III. Results of x-ray measurements for the whole series of $BiMO_3$ (M = Sc, Cr, Fe, Co, Ni) compounds and comparison with electronic-structure calculations are discussed in Sec. IV. The main conclusions are summarized in Sec. V.

II. EXPERIMENTAL DETAILS

All the samples were synthesized using a high-pressure, high-temperature method. Starting mixtures were placed in Au capsules and treated at 6 GPa in a belt-type high-pressure apparatus at different temperatures (heating rate was about 140 K/min). After heat treatment, the samples were quenched to room temperature, and the pressure was slowly released. BiCrO₃ was prepared from a 1:1 mixture of Bi₂O₃ (99.99%) and Cr₂O₃ (99.9%) at 1653 K for 60–70 min.¹² BiMnO₃ was prepared from a 1:1 mixture of Bi₂O₃ and Mn₂O₃ at 1383 K for 60–70 min.¹³ Single-phased Mn₂O₃ was prepared by heating commercial MnO₂ (99.99%) in air at 923 K for 24 h. For the preparation of BiScO₃, stoichiometric mixtures of Bi₂O₃ and Sc₂O₃ (99.9%) were dried at 873 K for 8 h and then treated at 1413 K (at 6 GPa) for 40 min.¹⁴

For the preparation of BiFeO₃, stoichiometric mixtures of Bi_2O_3 and Fe_2O_3 (99.9%) were first annealed at ambient pressure at 1073 K for 2 h. This procedure gave a mixture of BiFeO₃ (about 70 wt %), $Bi_{25}FeO_{39}$, and $Bi_2Fe_4O_9$. The resulting mixture was treated at 1273 K (at 6 GPa) for 1 h. After the high-pressure treatment, single-phased BiFeO₃ was obtained. BiCoO₃ was synthesized from stoichiometric mixtures of Bi_2O_3 , Co_3O_4 (99.9%), and KClO₃ at 1483 K (at 6 GPa) for 1 h. After 1 h, and BiNiO₃ from Bi_2O_3 , NiO (99.9%), and KClO₃ at 1483 K (at 6 GPa) for 1 h. The resulting samples were reground, washed with water, dried, and repressed at about 1 GPa at room temperature.

The x-ray emission spectra (XES) were measured at beamline 8.0.1 at the Advanced Light Source (ALS) at the Lawrence Berkeley National Laboratory.¹⁵ The x-ray absorption spectra (XAS) were measured at the Spherical Grating Monochromator beamline at the Canadian Light Source (CLS) at the University of Saskatchewan.¹⁶ The O 1*s* XAS spectra were measured in the total fluorescence yield (TFY) mode, which provides more bulk sensitivity than electron yield methods do. All XAS measurements were normalized by the incident photon flux, measured by a highlytransparent gold mesh. The O $K\alpha$ XES was excited near the O 1s ionization threshold to suppress the high-energy satellite structure. The instrumental resolving power $(E/\Delta E)$ was approximately 10^3 for the XES measurements and approximately 5×10^3 for the XAS measurements.

III. CRYSTAL STRUCTURE AND PHYSICAL PROPERTIES OF BiMO₃ COMPOUNDS

Within the multiferroic compounds, perovskite-type and related oxides are often the subject of extensive study. Below we give a short summary of crystal structure and basic physical properties of the $BiMO_3$ (M=Sc,Cr,Mn,Fe,Co,Ni) compounds. The space groups and lattice constants for the whole series are collected in Table I. The selected bond lengths are shown in Tables II–IV.

The structure of BiScO₃ has monoclinic symmetry with the space group C2/c.¹⁴ BiScO₃ is nonmagnetic and most of the interest in this compound is in the ferroelectric properties

TABLE II. Selected bond lengths in BiScO₃, BiCrO₃, and BiMnO₃, in angstrom. $\Lambda = \frac{1}{N} \sum_{i=1}^{N} (\frac{l_i - l_{av}}{l_{av}})^2$ and $l_{av} = \frac{1}{N} \sum_{i=1}^{N} l_i$, where l_i is the *i*th bond.

	BiScO ₃	BiCrO ₃	BiMnO ₃
M1-O2×2	2.08570	1.98308	1.90556
$M1-O1 \times 2$	2.10990	1.99158	2.19906
$M1-O3 \times 2$	2.15779	1.97805	1.98549
$\Lambda(M1-O)$	2.0×10^{-4}	$0.08 imes 10^{-4}$	37.2×10^{-4}
$M2-O3 \times 2$	2.09607	1.97890	1.94151
$M2-O1 \times 2$	2.11635	1.99268	1.92401
$M2-O2 \times 2$	2.13574	2.01393	2.24174
$\Lambda(M2-O)$	0.6×10^{-4}	0.5×10^{-4}	51.3×10^{-4}
Bi-O3	2.15352	2.25697	2.24562
Bi-O2	2.19212	2.23752	2.21778
Bi-O1	2.24633	2.32584	2.23928
Bi-O1	2.55437	2.44659	2.46625
Bi-O3	2.89682	2.65246	2.70996
Bi-O2	3.01816	2.78741	2.83703
$\Lambda({\rm Bi-O})$	18.7×10^{-3}	37.0×10^{-3}	9.9×10^{-3}

TABLE III. Selected bond lengths in BiFeO_3 and $\mathrm{BiCoO}_3,$ in angstrom.

Fe-O×3	1.97139	Co-O1	1.71781
Fe-O×3	2.08310	$Co-O2 \times 4$	2.01593
$\Lambda(M-O)$	8×10^{-4}		37×10^{-4}
Bi-O×3	2.30512	$Bi-O2 \times 4$	2.25155
Bi-O×3	2.51513	$Bi-O1 \times 4$	2.79852
$\Lambda(\text{Bi-O})$	1.9×10^{-3}		11.7×10^{-3}

of the BiScO₃-PbTiO₃ system. For the well-known piezoelectric material Pb(Zr, Ti)O₃ (PZT), the Curie temperature T_C at the morthotropic phase boundary between the rhombohedral and tetragonal ferroelectric state is 386 °C. It has been shown that for BiScO₃-PbTiO₃, the T_C reaches 450 °C (Ref. 17) while the piezoelectric coefficients in bulk are comparable to those of commercial PZT.

BiCrO₂ crystallizes in an orthorhombic structure above 420 K with the space group *Pnma* and lattice parameters a =5.54568(12) Å, b=7.7577(2) Å, and c=5.42862(12) Å at 490 K.¹² A structural phase transition from an orthorhombic to a monoclinic structure occurs at 420 K.^{12,18-20} Between 420 and 7 K, BiCrO₃ has a monoclinic structure with the space group C2/c and a=9.4641(4) Å, b=5.4790(2) Å, c=9.5850(4) Å, β =108.568(3)° at 7 K.¹² A long-range G-type antiferromagnetic order with weak ferromagnetism develops below $T_N = 109$ K and does not change down to 7 K.¹² Four anomalies of magnetic origin were observed at 40, 75, 109, and 111 K.²⁰ The magnetic moments of the Cr³⁺ ions were found to align along the monoclinic b axis in a similar manner to the direction of the magnetic moments of the Mn³⁺ in BiMnO₃.^{21,22} The magnetic structure of BiCrO₃ was first predicted from ab initio electronic-structure calculations.²³

The bismuth manganite (BiMnO₃) has a highly distorted perovskite structure and has been regarded as a multiferroic material. The ferroelectricity has been analyzed within first-principles electronic-structure calculations,²⁴ and attributed to the chemical activity of the Bi $6s^2$ lone pairs.⁸ BiMnO₃ is the only ferromagnet among the discussed BiMO₃ compounds with a Curie temperature above 100 K. The largest saturation magnetization has been reported to be $3.92\mu_B$ per

formula unit,¹³ which is close to the $4\mu_B$ expected for the ferromagnetic state. The ferroelectric hysteresis loop has been observed in polycrystalline and thin-film samples of BiMnO₃,²⁵ although the measured ferroelectric polarization was much smaller (about 0.043 μ C/cm² at 200 K) than the one obtained in the first-principles calculations for the experimental noncentrosymmetric structure (about 0.52 μ C/cm²).²⁶

BiMnO₃ undergoes two phase transitions at temperatures 474 K (monoclinic to monoclinic) and 770 K (monoclinic to orthorhombic).^{22,27,28} According to early experimental data, BiMnO₃ was considered to have noncentrosymmetric *C*2 space group below 770 K.^{22,27} Recently, the crystal structure of BiMnO₃ was reexamined by Belik *et al.*¹³ and confirmed by neutron powder-diffraction experiments by Montanari *et al.*²¹ The new experiments reveal that BiMnO₃ below 770 K has a centrosymmetric *C*2/*c* space group with parameters given in Table I. A structural optimization performed using modern methods of electronic-structure calculations has shown that the noncentrosymmetric *C*2 structure, which had been reported earlier converges to the new total-energy minimum corresponding to the *C*2/*c* structure with zero net polarization.^{29,30}

Since the C2/c structure of BiMnO₃ has inversion symmetry, the hypothesis that electric polarization arises due to bismuth lone pairs is no longer valid. The magnetic mechanism of inversion symmetry breaking was considered recently in Ref. 31. It was shown that the peculiar orbital ordering realized below 474 K gives rise to ferromagnetic (FM) interactions between nearest-neighbor spins which compete with longer-range antiferromagnetic (AFM) interactions. The solution of the low-energy model for 3*d* states in BiMnO₃ revealed that the true symmetry is expected to be *Cc*. The solution of the realistic model indicates a noncollinear magnetic ground state, where the FM order along one crystallographic axis coexists with the hidden AFM order and a related ferroelectric polarization along two other axes.³²

The perovskite BiFeO₃ is ferroelectric with T_c =1103 K and antiferromagnetic with T_N =643 K and a canted spin structure.³³ The bulk single crystal has a rhombohedrally distorted perovskite structure with the space group R3c (Ref. 34) and lattice parameters presented in Table I. The G-type collinear antiferromagnetic spin configuration has been

Ni1-O2×2	1.98294	Ni2-O3×2	2.04959	Ni3-O5×2	1.98075	Ni4-O1×2	2.05408
Ni1-O3×2	1.99200	Ni2-O4 \times 2	2.07097	Ni3-O2 \times 2	2.10662	Ni4-O6 $\times 2$	2.10927
Ni1-O4 \times 2	2.28697	Ni2-O1 \times 2	2.13415	Ni3-O6×2	2.12071	Ni4-O5 \times 2	2.20769
$\Lambda(M-O)$	46×10^{-4}		3×10^{-4}		9×10^{-4}		9×10^{-4}
Bi1-O3	2.21311	Bi2-O1	2.03349				
Bil-O5	2.26541	Bi2-O4	2.04058				
Bi1-O2	2.32491	Bi2-O6	2.09686				
Bil-O3	2.41745	Bi2-O2	2.13787				
Bil-Ol	2.52033	Bi2-O5	2.24213				
Bil-O4	2.67658	Bi2-O6	2.25756				
$\Lambda(\text{Bi-O})$	4.3×10^{-3}		1.7×10^{-3}				

TABLE IV. Selected bond lengths in BiNiO₃, in angstrom.

modified by subjecting it to a long-range (620 Å) modulation leading to a spiral modulated spin structure.³⁵ The spontaneous polarization of a single crystal is 3.5 μ C/cm² along (001) direction and 6.1 μ C/cm² in (111) direction at 77 K.³⁶ This value is significantly smaller than spontaneous polarization of lead titanate (80–100 μ C/cm² with the T_C \sim 763 K). However, the heteroepitaxially constrained thin films of BiFeO₃ display a room-temperature spontaneous polarization of 50–60 μ C/cm², an order of magnitude higher than in the bulk.³⁷ The spin-polarized first-principles calculation within local spin-density approximation (LSDA) using the pseudopotential VASP package with the optimized lattice parameters for the bulk rhombohedral phase results in polarization of 6.61 μ C/cm² in excellent agreement with experiment.³⁷ The thin films were shown to have tetragonallike structure. For the P4mm symmetry and lattice parameters measured for thin film, the Berry-phase calculation³⁷ yields a spontaneous polarization of 63.2 μ C/cm², consistent with experimental data, but it was revealed that small changes in lattice parameters can lead to a dramatically different polarization. The magnetoelectric coefficient (dE/dH,E-electric field, and H-magnetic field) was measured to be 3 V/cm Oe at zero field.³⁷ Later on, the values of remnant polarization were increased to 55 μ C/cm² for (001) films, 80 μ C/cm² for (101) films and about 100 μ C/cm² for (111) films.³⁸ The BiFeO₃ films grown on (111) have the rhombohedral structure as single crystals whereas films grown on (101) or (001) are monoclinically distorted.³⁸ The highest remnant polarization ever measured for a ferroelectric material, 146 μ C/cm², has been reported for BiFeO₃ thin films with tetragonal crystal structure in Ref. 39. A wide range of measured polarization values were shown to be consistent with the modern theory of polarization,⁴⁰⁻⁴² which recognizes that polarization is a lattice of values rather than a single vector.43

BiCoO₃ is isotypic with BaTiO₃ and PbTiO₃ and has a tetragonal crystal structure with the lattice parameters a =3.71990(7) Å, b=4.71965(15) Å, and c/a=1.269 at 5 K.⁴⁴ BiCoO₃ is an insulator with T_N =470 K. It has C-type antiferromagnetic order where the magnetic moments of the Co^{3+} ions aligning antiferromagnetically in the *ab* plane and antiferromagnetic ab layers stack ferromagnetically along the c axis.⁴⁴ The high-spin (HS) configuration of Co^{3+} ions (S=2) has been reported.⁴⁴ The magnetic moments are m $=3.24(2)\mu_B$ for T=5 K and $m=2.93(2)\mu_B$ at room temperature.44 A reduction in the observed magnetic moment compared to the expected value $4\mu_B$ may be ascribed to the covalency of Co-O bonds. The bond valence sums (BVS) at 300K obtained in Ref. 44 were 3.14 for Bi and -2.13 for O2 corresponding to the oxidation states +3 and -2, respectively. The BVS values were 2.68 for Co and -1.57 for O1 indicating the covalency effects. The spontaneous polarization in BiCoO₃ of 179 μ C/cm² has been predicted from first-principle Berry-phase calculations.⁴⁵ The experimental observation of a ferroelectric hysteresis loop is problematic since the resistivity appears too low for the large applied electric field. Therefore it was proposed that BiCoO₃ should be regarded as a pyroelectric rather than a ferroelectric material (in pyroelectrics the dipole moments cannot be reoriented by external electric field).⁴⁴ The C-type antiferromagnetic order with a reduced magnetic moment of $2.41 \mu_B$ have been also predicted from first-principles calculations⁴⁵ resulting in insulating ground state with an energy gap of 0.6 eV.

BiNiO₃ has been found to be an insulating antiferromagnet $(T_N = 300 \text{ K})$ (Ref. 46) with a heavily distorted triclinic symmetry $P\overline{1}$. The lattice constants are shown in Table I. X-ray powder-diffraction data has revealed that Bi ions were disproportionately weighted toward Bi³⁺ and Bi⁵⁺ and therefore the oxidation state of the Ni ion was +2 rather than the expected +3.46,47 The Curie constant estimated from the magnetic susceptibility of BiNiO₃ is close to that expected for S=1 rather than for S=1/2 system. This fact as well as BVS confirms the divalent nature of Ni. The electronic structure of BiNiO₃ has been performed by the full-potential method within local-density approximation (LDA) plus U(U=8 eV, J=0.95 eV) approximation with the G-type antiferromagnetic spin configuration.⁴⁸ At ambient pressure, an insulating solution with the charge-transfer gap of 0.8 eV was obtained in agreement with the value of 0.675 eV estimated from the electrical resistivity.⁴⁶ From the powder neutron-diffraction study, it was found that the valence state of BiNiO₃ changes under pressure.⁴⁸ Both neutrondiffraction measurements and BVS show that under pressure the charge disproportionate state melts leading to the simultaneous charge transfer from Ni to Bi so that the highpressure phase is metallic Bi³⁺Ni³⁺O₃. This transition takes place at 4 GPa pressure and structure changes to the GdFeO₃ type with the *Pbnm* symmetry.⁴⁸ First-principles calculations also reproduce the metallic character of high-pressure phase.48

IV. RESULTS AND DISCUSSION

A. LSDA calculations

structure of the $BiMO_3$ The electronic (M=Sc,Cr,Mn,Fe,Co,Ni) series was calculated within the LSDA (Refs. 49 and 50) with a linear muffin-tin orbitals basis (LMTO) (Refs. 51 and 52) using the Stuttgart tightbinding-LMTO program (version LMTO47). The experimental atomic positions and lattice constants shown in Table I were used for all compounds, and the experimentally determined magnetic structures described in previous sections were used for the spin-polarized calculations (for BiFeO₃ the G-type AFM order was assumed). The calculated energy gaps (Δ_a^{calc}) and magnetic moments are shown in Table V along with the available experimental data. The LSDA approach indicates that BiScO₃, BiCrO₃, BiFeO₃, and BiCoO₃ are insulators. For BiMnO3 and BiNiO3, LSDA results in half-metallic and metallic solution, respectively, although both materials are known to be insulators. The failure of LSDA in these two cases is due to the improper treatment of Coulomb correlations. It is well known that LSDA+U improves the description of correlation effects in transitionmetal oxides due to treating the strong Coulomb repulsion between localized d states by adding a Hubbard-type term to the effective potential.⁵³ This calculation requires the Hubbard parameter U and exchange interaction J. Although these parameters can be calculated by the constrained LDA

TABLE V. The calculated (Δ_g^{calc}) and estimated from XES and XAS spectra (Δ_g^{exp}) values of energy gap in comparison with the experimental data taken from literature $(\Delta_g^{Lit.})$. The error in the estimated energy gap Δ_g^{exp} is roughly ± 0.5 eV. The calculated magnetic moments on the *M* ion (m_M) along with experimental estimations $(m_M^{Lit.})$ for BiMO₃ compounds. The different values of magnetic moments in case of *M* = Cr, Mn, Ni correspond to the nonequivalent *M* atoms in the unit cell.

Compound	Δ_g^{calc} (eV)	Δ_g^{exp} (eV)	$\Delta_g^{Lit.}$ (eV)	$m_M \ (\mu_B)$	$m^{Lit.}_{M} \ (\mu_B)$	Config. M^{3+}
BiScO3	3.3	2.6		0		d^0
BiCrO ₃	0.88	1.4		2.63, 2.65	2.55 ^a	d^3
BiMnO ₃	0.33	0.9	Insulator ^b	3.65, 3.64	3.2 ^c	d^4
BiFeO ₃	0.51	0.9	1.3, ^d 2.5 ^e	3.54	3.75^{f}	d^5
BiCoO ₃	0.72	1.7	Insulator ^g	2.41	3.24 ^g	d^6
BiNiO ₃	1.23	1.1	0.675 ^h	1.7; 1.67	1.76 ⁱ	d^7

^aReference 12. ^bReference 56.

^cReference 22.

^dReference 10.

^eReference 57.

method,⁵⁴ in the present work we just use the typical values U=3 eV, J=1 eV for BiMnO₃ (Ref. 31) and U=8 eV, J=1 eV for BiNiO₃.⁵⁵

The partial densities of states (DOSs) calculated for the $BiMO_3$ series within the LSDA and LSDA+U (for $BiNiO_3$ and $BiMnO_3$) approaches are presented in Fig. 1. The valence band for all $BiMO_3$ compounds is formed by the M 3d states hybridized with the O 2p states. The low-energy states at about -10 eV come from Bi 6s states, the so-called lone pair. These states are only slightly hybridized with 2p states of oxygen.

FIG. 1. (Color online) LSDA (LSDA+U with U=3 eV, J=1 eV for BiMnO₃, and U=8 eV, J=1 eV for BiNiO₃) partial M spin-resolved 3d, O 2p, and Bi 6s, 6p, and 6d density of states for Bi MO_3 (M=Sc,Cr,Mn,Fe,Co,Ni) compounds. The Fermi level corresponds to zero.

^fReference 34.

^gReference 44. ^hReference 46.

ⁱReference 47.

Reference 47.

BiScO₃, BiCrO₃, and BiMnO₃ all have a monoclinic structure and can be compared directly. The bond lengths for these three compounds are summarized in Table II. Although the space groups of these compounds are the same, the MO_6 octahedra distortions are different for each and most pronounced in the case of BiMnO₃. The parameter $\Lambda(M-O)$ in Table II indicates the degree of MO_6 octahedra distortion. The largest $\Lambda(M-O)$ corresponds to BiMnO₃ while in BiCrO₃, the CrO₆ octahedron is almost undistorted. The shortest Bi-O bond lengths also shrink from Sc to Mn. Since the oxygen atoms surrounding Bi do not form regular polyhedron, we take the six nearest neighbors and estimate the variations between the compounds [denoted by $\Lambda(Bi-O)$]. All three compounds display rather strong deviation from the average Bi-O bond but the largest $\Lambda(Bi-O)$ is found for BiScO₃. BiFeO₃, and BiCoO₃ have different structures. Five oxygen atoms surrounding the Co ion form a pyramid (see Table III). This pyramid is contracted so the distortion parameter is rather large. In BiFeO3, the FeO6 octahedron is less distorted than in BiMnO₃ system. The oxygen atoms around Bi are distributed almost evenly in BiFeO3 while in BiCoO₃ rather irregular arrangement of oxygen atoms can be seen from the Bi-O bond lengths shown in Table III. In Table IV, the distances between the Bi-O and the Ni-O bond lengths for BiNiO₃ are shown. The low symmetry of BiNiO₃ leads to the four nonequivalent Ni atoms and two nonequivalent Bi atoms in the unit cell. Among the four Ni octahedra formed by oxygen atoms, the one around Ni1 is the most distorted. The oxygen neighborhood around the Bi atoms is rather uniform.

For BiScO₃ and BiCrO₃, an insulating solution was obtained with LSDA calculations (see Fig. 1). BiScO₃ has a formal electronic configuration d^0 and calculated energy gap of 3.3 eV. The valence band is formed by O 2*p* states while the conduction band is composed of Sc 3*d* states hybridized with O 2*p* states. BiCrO₃ has three electrons occupying t_{2g} orbitals (see Fig. 1). The energy gap of 0.88 eV and magnetic moment of 2.63 and $2.65\mu_B$ (for two nonequivalent Cr atoms) was obtained in spin-polarized calculation in good agreement with the value $2.55\mu_B$ obtained in neutrondiffraction experiments.¹² Both the valence and conduction bands are formed mainly by Cr 3*d* states with small admixture of O 2*p* states. LSDA+*U* predicts an insulating state for ferromagnetically ordered BiMnO₃ in agreement with experiment (see Fig. 1). The calculated magnetic moments for two nonequivalent Mn ions are $3.64\mu_B$ and $3.65\mu_B$, in agreement with experimental values shown in Table V. Both the O 2*p* and the Mn 3*d* bandwidths are wider than those of BiCrO₃ but the main contribution to the valence band comes from Mn 3*d* states. There is also a strong overlap of O 2*p* and Mn 3*d* bands.

LSDA calculations result in an insulating solution for BiFeO₃ with the energy gap of 0.51 eV. This is much smaller than experimental estimates.^{10,57} However, the magnetic moment value of $3.54\mu_B$ is in good agreement with experiment (see Table V). The calculated DOS agrees well with the results of previous *ab initio* calculations.⁴³ Within LSDA, the HS state for the d^5 configuration of Fe ion was obtained as shown in Fig. 1. Both the valence and conduction bands are formed predominantly by Fe 3*d* states hybridized with O 2*p* states.

The LSDA calculations for BiCoO₃ suggest it is an insulator with an energy gap of 0.72 eV. We obtained HS state of d^6 electrons with magnetic moment of 2.41 μ_B which is smaller than 4 μ_B (expected for HS state) due to covalency effects.

With the LSDA+U method, BiNiO₃ is insulator with an energy gap of 1.23 eV. This value is twice as large as the experimental result from Ref. 46 but in good agreement with the present experimental estimation (see Table V). The values of the calculated magnetic moments given in Table V are in agreement with the experimental ones. From the density of states, it can be seen that the top of the valence band and the bottom of the conduction band are formed by Bi1 6*s* and Bi2 6*s* states hybridized with O 2*p* states. The occupancies calculated for the *d* states of the four nonequivalent Ni atoms in the LSDA+U calculation are 8.2, 8.36, 8.23, and 8.49 indicating that Ni has a 2+ valence which is in agreement with calculations performed in the literature.⁴⁸

B. XES and XAS measurements

The O $K\alpha$ XES and O 1s XAS measurements of Bi MO_3 (M=Sc,Cr,Mn,Fe,Co,Ni), which probe the occupied and vacant O 2p states, respectively, are presented in Fig. 2. The fine structure and energy distribution of the O $K\alpha$ XES matches the O 2p occupied DOS obtained from LSDA calculations (see Fig. 1). A small amount of hybridization between Bi 6s and O 2p states is visible at about 519 eV in all compounds, as suggested by the calculated O 2p states.

As we have shown in Ref. 58, there is significant hybridization between the O 2p states and the occupied *d* states of nontransition-metal cations. This hybridization is involved in formation of chemical bonding in solids. In BiMO₃ compounds, as seen in Fig. 1, the main maxima of O 2p and Bi 6*d* states occur at the same energy. The main maxima of the calculated *M* 3*d* states are also close to that energy. The

FIG. 2. (Color online) Measured oxygen $K\alpha$ XES and O 1s XAS of Bi MO_3 compounds. The XAS is measured in total fluorescent yield (TFY) mode. The energy gap is estimated using the peaks in the second derivative, plotted below the corresponding spectra. The Bi 6s-O 2p hybridization peak at about 519 eV has been magnified by a factor of 5. The M 4s, O 2p, and Bi 6s DOS are shaded in the background of each figure (for M=Sc,Cr,Mn,Fe,Co,Ni). They have been convoluted with a 0.3 eV wide Lorentzian function to mimic the experimental resolution. The Fermi level for the DOS was estimated using the peak in the XES second derivative.

nonbonding localized 3d states weakly mix with O 2p states near the Fermi level.

All O $K\alpha$ XES spectra consist of a low-energy subband located at ~2.5 eV with respect to the main maximum. As shown in Ref. 58, the low-energy subband of O $K\alpha$ XES of all binary oxides is directly connected with the *s* valence states of the cation. The energy separation of this subband from the main valence band depends on the period number of the transition metal. For ZnO, it is ~2.4 eV, which coincides with the separation of the subband from the main band of O $K\alpha$ XES for Bi MO_3 compounds. The Bi 6*s* states are located ~5 eV below the *M* 4*s* states, and therefore hybridize only weakly with the O 2*p* states (see Fig. 1).

The near-edge fine structure of the O 1s XAS (see Fig. 2) consists of three peaks (labeled as 1, 2, and 3) separated by $\sim 1.5-2$ eV for all compounds. There is a similar peak structure in the calculated unoccupied O 2p DOS (Fig. 2) in spite of the fact that the experimental energy gap (Δ_g^{exp}) is not reproduced in LSDA calculations. Indeed, the lack of the appropriate energy gap does not affect the correct reproduction of the energy distance between the main maximum of the O $K\alpha$ XES and the first peak of the O 1s XAS (~ 5 eV) in the LSDA calculations. This further demonstrates the well-known fact that O 2p states are less influenced by correlation effects than *d* states.⁵⁹

The O 1s XAS spectra of $BiNiO_3$ and $BiCoO_3$ show additional peaks near the Fermi level similar to those which

FIG. 3. The experimental (gray dots) and calculated (black dots) energy gaps for the $BeMO_3$ compounds.

were observed in the O 1s XAS of $Li_xNi_{1-x}O_{,60}^{,60}$ LiCoO₂,⁶¹ and LaNiO₃.⁶² These additional peaks were attributed in Refs. 60 and 62 to the formation of O 2p hole electronic states because of the energy disadvantage associated with a Ni³⁺ charge state. The Co³⁺ charge state is more stable, hence the intensity of the holelike peak in BiCoO₃ is much lower than that in BiNiO₃. Indeed, the "hole effect" in BiNiO₃ is even larger than that in Li_xNi_{1-x}O.⁶⁰ Among the materials studied in Ref. 60, the intensity of the O 2p hole peak was found to be largest for Li_{0.5}Ni_{0.5}O where the hole peak had \sim 70% of the intensity of the main maximum of the O 1s XAS. Similar intensity ratios have been reported for LaNiO₃.⁶² In BiNiO₃, however, the relative intensity of the O 2p hole peak is about 100% of the intensity of the main O 2p band. The O 2p holes are created in order to maintain the neutrality of the compound with the Ni²⁺ valence state. They are clearly observed in the O 1s XAS for Ni oxides LaNiO₃ and BiNiO₃. In the LSDA+U calculation, the gap arises between the states predominantly formed by Bi 6s states strongly hybridized with O 2p states. The Ni atoms have a 2+ valency in agreement with our experimental findings.

The energy gap for all compounds in the series was estimated using the peaks in the second derivative. This method has been shown to work well with O $K\alpha$ XES and 1s XAS.⁵⁹ The estimated energy gaps from the experimental spectra and the calculations are not exactly the same. This is expected since LSDA calculations are known to underestimate the energy gap by up to 50%, and the "second derivative method" can often overestimate the energy gap when there are only a few states near the Fermi level (as is the case with BiMnO₃). We have found that the calculated energy gaps are mostly within 0.5 eV of the experimental energy gaps is essentially the same as that in the experimental energy gaps for these materials (see Fig. 3).

Note that the choice for the peak in the second derivative for the O 1s XAS in BiCoO₃ and BiNiO₃ is somewhat arbitrary since the O 2p hole peak obscures the true absorption onset. In these two cases, the second derivative method is not really applicable to the O 1s XAS; even though the estimated energy gap for BiNiO₃ is the same as the calculated value. Second, it is worthwhile to point out that BiCoO₃ and

FIG. 4. The comparison between the O $K\alpha$ XES and O 1s XAS (lower panel) and the LSDA+U O 2p DOS (upper panel) of BiFeO₃. In the upper panel, the calculated LSDA+U O 2p DOSs for several values of U are shown. The O 2p DOSs have been convoluted with the Fermi step at T=300 K and broadened by 0.3 eV using a Lorentzian to mimic the experimental resolution. The Fermi level corresponds to zero.

BiMnO₃, which exhibit the largest and second largest discrepancy between calculated and experimentally estimated energy gaps, also exhibit the largest and second largest discrepancy between the estimated (using the peak of the second derivative in the XES spectra) and the calculated Fermi level, as shown in Fig. 2 (note that even though the 2*p* hole peak obscures the absorption onset, we still expect the second derivative to predict the Fermi level from the O $K\alpha$ XES spectra). Since the shape, if not the estimated energy placement, of the calculated O 2*p* DOS is still a good match to the measured O $K\alpha$ XES, the discrepancy in the energy gaps is likely a combination of the inability of the LSDA calculations to accurately predict gaps and the ambiguity in the onset of the measured XES.

The comparison of the oxygen and iron x-ray spectra of BiFeO₃ with the calculated O 2p and Fe 3d DOSs is shown in Figs. 4 and 5, respectively. The Fermi-level position for the Fe L_3 XES was determined using the x-ray photoemission spectroscopy (XPS) Fe $2p_{3/2}$ binding energy (710 eV).⁶³ In the absence of XPS O 1s data, the O K_{α} XES is compared with O 2p DOS by alignment of Bi 6s related subbands. The LSDA calculation reproduces the energy position of the Fe L_3 XES (which probes occupied Fe 3d states) with respect to the Fermi level. On the other hand, the available LSDA+U calculations^{10,43} show a low-energy shift of Fe 3d band which contradicts the experimental Fe L_3 XES. The spectral weight of Fe 3d and O 2p states is redistributed with increasing U value within LSDA+U calculations, as shown in Figs. 4 and 5. As the U value rises, the Fe 3d states are shifted to lower energies (Fig. 5). At the same time, the O 2pstates (Fig. 4) are shifted toward Fermi level. Taking this trend into account, both the occupied O 2p and Fe 3d states obtained with U=0 eV are in better agreement with experimental spectra than the one calculated with a nonzero U. The

FIG. 5. The comparison between the Fe $L_{2,3}$ XES (lower panel) and the LSDA+U Fe 3d DOS (upper panel) of BiFeO₃. In the upper panel, the calculated LSDA+U Fe 3d DOSs for several values of U are shown. The Fe 3d DOSs have been convoluted with the Fermi step at T=300 K and broadened by 0.3 eV using a Lorentzian to mimic the experimental resolution. The Fermi level corresponds to zero.

Fe $L_{2,3}$ XES spectrum has some intensity at and just below the Fermi level while the O $K\alpha$ XES spectrum indicates a clear energy gap (see the lower panel of Fig. 4) in this energy region. In a recently published paper,¹⁰ it was concluded that LSDA+U calculations (U=2 eV) are a better match to experimental Fe L_3 XES of BiFeO₃ than an LSDA (where U =0 eV) calculation. However, the comparison procedures used in matching calculations to experimental spectra are not described in Ref. 10. Based on the comparison from Ref. 10, one can estimate an XPS Fe $2p_{3/2}$ binding energy of 713 eV which contradicts the available experimental data (710 eV).⁶³

We now turn to discussing the origin of ferroelectricity in $BiMnO_3$ and $BiFeO_3$. From Fig. 2 it is clear that the Bi 6s states in all compounds are not hybridized with the Bi 6p states. As was mentioned in Refs. 7 and 8, these Bi 6s lone pairs are slightly hybridized with O 2p states, and can induce a dipole moment. However, we could not find any difference in the degree of Bi 6s-O 2p hybridization for BiMnO₃ and BiFeO₃ compared to that of other Bi MO_3 compounds where no ferroelectricity is observed.

A detailed comparison of the lone-pair localization and bonding for Sn^{2+} , Pb^{2+} and Bi^{3+} in SnWO_4 , PbWO_4 , and BiVO₄ has been carried out in Ref. 7. It was found that hybridization produces largely nonbonding lobe of localized electron density of Sn 5*s*-O 2*p*-Sn 5*p* orbital that is strongly stereochemically active. By calculating the cooperative orbital Hamiltonian overlap, it was shown that the lone-pair distortion leads to a significant increase in the Sn 5*s*-O 2*p* bonding interaction. Due to the relativistic contraction going from Sn²⁺ to Pb²⁺, the Pb 5*s*-O 2*p* interaction is reduced. As a result, the symmetric structure is stabilized. Though for Bi³⁺ there is further stabilization of 6*s* orbitals, the stereoactive lone-pair distortion appears to be enhanced.⁷ In the present paper, we analyze the similar tendency in Bi MO_3 series trying to bind the Bi 6*s*-O 2*p* hybridization with the ferroelectricity. We obtained almost the same hybridization strength for all compounds indicating that lone pairs are active. Only in BiNiO₃, the Bi 6*s*-O 2*p* bonding states are less localized than those in the other compounds. The stereochemical activity of the Bi lone pair induces the electric moment but if the symmetry of the system includes inversion the net polarization turns to zero.

The first-principles calculations predicted the electric polarization of $P=47 \ \mu C/cm^2$ for the rhombohedral phase of BiScO₃ (Ref. 64) but afterward the crystal structure was experimentally detected as a centrosymmetric monoclinic C2/c.¹⁴ Antiferroelectricity in BiCrO₃ was experimentally observed for the epitaxial films⁶⁵ ($P \sim 12 \ \mu C/cm^2$). Previously the A-type antiferromagnetic ground state and the distorted antiferroelectric structure have been proposed for BiCrO₃ based on the first-principles calculation.²³ This hardly makes BiCrO₃ a technologically relevant multiferroic material. BiMnO₃ is experimentally established ferroelectric system. The ferroelectric hysteresis loop has been observed on both polycrystalline and thin-film samples $(P \sim 0.043 \ \mu \text{C/cm}^2)$.²⁵ The first-principles calculations resulted in polarization $P=0.52 \ \mu C/cm^2$ for the crystal structure C2, which does not include inversion symmetry²⁶ but recently the centrosymmetric C2/c space group was detected.^{13,21} BiFeO₃, the most well-studied multiferroic, has a spontaneous polarization of $P=6.1 \ \mu C/cm^2$ for single crystal³⁶ and much more impressive value of P=50–60 μ C/cm² for thin films.³⁷ The theoretical calculations achieve $P=6.61 \ \mu C/cm^2$ in excellent agreement with experiment.³⁷ For BiCoO₃, ab initio calculations⁴⁵ predicted the $P=179 \ \mu C/cm^2$ though there is a lack of experimental confirmation so far. There is no experimental evidence for BiNiO₃ being multiferroic.⁶⁶ The highly distorted triclinic structure of BiNiO₃ (Ref. 46) is centrosymmetric, and therefore not polar. Strain in thin films or doping in bulk might contribute to the inversion symmetry breaking but this is the scope for the feature investigations.

It can be seen that among BiMO₃ (M=Sc,Cr,Mn,Fe,Co,Ni) series, there are two possible candidates for multiferroics: BiFeO₃ and BiCoO₃ since their space groups are noncentrosymmetric and hence allow the net polarization. Experimental results have thus far revealed two ferroelectrics in the series, namely, BiFeO₃ and BiMnO₃. The space group for the monoclinic structure of BiMnO₃ contains inversion while the rhombohedral BiFeO₃ has R3csymmetry without inversion. Therefore, the origin of ferroelectricity in these two compounds seems to be different. As was recently proposed, the emergence of electric moment in BiMnO₃ is connected with inversion symmetry breaking by the noncollinear AFM order induced by particular orbital order below T=474 K.^{31,32} Another scenario for the onset of ferroelectricity is possible in BiFeO3: an extensive investigation of ferroelectricity in BiFeO3 within the framework of density-functional theory was reported in Ref. 43. It was mentioned that the driving force of the ferroelectric distortion is the Bi lone pair. The calculated values of polarization agree well with experimental results.³⁷ For $BiCoO_3$ with tetragonal structure the ferroelectric hysteresis loop has not yet been observed. One possible reason could be a low resistivity to the applied electric field as was pointed out in Ref. 44.

V. SUMMARY

In conclusion, the electronic structure of the Bi MO_3 (M =Sc,Cr,Mn,Fe,Co,Ni) series was studied by soft x-ray emission and absorption spectroscopy. Experimental spectra were found to be in good agreement with spin-polarized electronic-structure calculations. The presence of holes in the O 1s XAS spectrum of BiNiO₃ was attributed to the 2+ valency of Ni. For all Bi MO_3 (M=Sc,Cr,Mn,Fe,Co,Ni) compounds, the band-gap values were estimated from O $K\alpha$ XES and O 1s XAS spectra. In the case of BiFeO₃, this estimation results in the band-gap value ~0.9 eV. The x-ray spectra for multiferroic and nonmultiferroic compounds in the series do not reveal any difference in degree of Bi 6s-O 2p hybridization. It was concluded that for nonzero electric polarization,

*john.mcleod@usask.ca

- [†]pzv@ifmlrs.uran.ru
- ¹G. Smolenskiĭ, V. Isupov, A. Agranovskaya, and N. Kranik, Sov. Phys. Solid State **2**, 2651 (1961).
- ²G. Smolenskiĭ, V. Yudin, E. Sher, and Y. E. Stolypin, Sov. Phys. JETP **16**, 622 (1963).
- ³J. F. Scott, Nature Mater. **6**, 256 (2007).
- ⁴N. A. Spaldin and M. Fiebig, Science **309**, 391 (2005).
- ⁵D. Khomskii, J. Magn. Magn. Mater. **306**, 1 (2006).
- ⁶D. Khomskii, Phys. **2**, 20 (2009).
- ⁷M. W. Stoltzfus, P. M. Woodward, R. Seshadri, J.-H. Klepeis, and B. Bursten, Inorg. Chem. **46**, 3839 (2007).
- ⁸R. Seshadri and N. A. Hill, Chem. Mater. 13, 2892 (2001).
- ⁹C. Ederer and N. A. Spaldin, Curr. Opin. Solid State Mater. Sci. 9, 128 (2005).
- ¹⁰T. Higuchi et al., Phys. Rev. B 78, 085106 (2008).
- ¹¹J.-S. Kang, S. W. Han, J.-G. Park, S. C. Wi, S. S. Lee, G. Kim, H. J. Song, H. J. Shin, W. Jo, and B. I. Min, Phys. Rev. B **71**, 092405 (2005).
- ¹²A. A. Belik, S. Iikubo, K. Kodama, N. Igawa, S. Shamoto, and E. Takayama-Muromachi, Chem. Mater. **20**, 3765 (2008).
- ¹³A. A. Belik et al., J. Am. Chem. Soc. **129**, 971 (2007).
- ¹⁴A. A. Belik *et al.*, J. Am. Chem. Soc. **128**, 706 (2006).
- ¹⁵J. J. Jia et al., Rev. Sci. Instrum. **66**, 1394 (1995).
- ¹⁶T. Regier, J. Krochak, T. K. Sham, Y. F. Hu, J. Thompson, and R. I. R. Blyth, Nucl. Instrum. Methods Phys. Res. A **582**, 93 (2007).
- ¹⁷R. E. Eitel, C. A. Randall, T. R. Shrout, P. W. Rehrig, W. Hackenberger, and S.-E. Park, Jpn. J. Appl. Phys. **40**, 5999 (2001).
- ¹⁸F. Sugawara, S. Iiida, Y. Syono, and S. Akimoto, J. Phys. Soc. Jpn. **25**, 1553 (1968).
- ¹⁹S. Niitaka, M. Azuma, M. Takano, E. Nishibori, M. Takata, and M. Sakata, Solid State Ionics **172**, 557 (2004).
- ²⁰A. A. Belik, N. Tsujii, H. Suzuki, and E. Takayama-Muromachi, Inorg. Chem. 46, 8746 (2007).

the stereochemical activity of the Bi lone pair should be accompanied with the inversion symmetry breaking. This condition is satisfied in the case of $BiMnO_3$, $BiFeO_3$, and $BiCoO_3$ but the electric polarization arises due to the different reasons. In $BiMnO_3$, noncollinear magnetic order with an AFM component breaks the inversion symmetry and allows net polarization. In $BiFeO_3$, the rhombohedral crystal structure does not contain inversion and the crucial role is played by Bi lone pairs. $BiCoO_3$ is supposed to be ferroelectric but a ferroelectric hysteresis loop has not yet been observed, therefore $BiCoO_3$ should be considered a pyroelectric material.

ACKNOWLEDGMENTS

We acknowledge the support of the Russian Science Foundation for Basic Research (Projects No. 08-02-00148 and No. 10-02-96011), the Dynasty Foundation (PZV), the Natural Sciences and Engineering Research Council of Canada (NSERC), and the Canada Research Chair program.

- ²¹E. Montanari, G. Calestani, L. Righi, E. Gilioli, F. Bolzoni, K. S. Knight, and P. G. Radaelli, Phys. Rev. B **75**, 220101(R) (2007).
- ²² A. Moreira dos Santos, A. K. Cheetham, T. Atou, Y. Syono, Y. Yamaguchi, K. Ohoyama, H. Chiba, and C. N. R. Rao, Phys. Rev. B **66**, 064425 (2002).
- ²³N. A. Hill, P. Battig, and C. Daul, J. Phys. Chem. B **106**, 3383 (2002).
- ²⁴N. A. Hill and K. M. Rabe, Phys. Rev. B **59**, 8759 (1999).
- ²⁵ A. Moreira dos Santos, S. Parashar, A. R. Raju, Y. S. Zhao, A. K. Cheetham, and C. N. R. Rao, Solid State Commun. **122**, 49 (2002).
- ²⁶T. Shishidou, N. Mikamo, Y. Uratani, F. Ishii, and T. Oguchi, J. Phys.: Condens. Matter 16, S5677 (2004).
- ²⁷T. Atou, H. Chiba, K. Ohoyama, Y. Yamaguchi, and Y. Syono, J. Solid State Chem. **145**, 639 (1999).
- ²⁸E. Montanari, G. Calestani, A. Migliori, M. Dapiaggi, F. Bolzoni, R. Cabassi, and E. Gilioli, Chem. Mater. **17**, 6457 (2005).
- ²⁹T. Shishidou (private communication).
- ³⁰P. Baettig, R. Seshadri, and N. A. Spaldin, J. Am. Chem. Soc. 129, 9854 (2007).
- ³¹I. V. Solovyev and Z. V. Pchelkina, New J. Phys. **10**, 073021 (2008).
- ³²I. V. Solovyev and Z. V. Pchelkina, Pis'ma Zh. Eksp. Teor. Fiz. 89, 701 (2009) [JETP Lett. 89, 597 (2009)].
- ³³G. A. Smolenskiĭ and I. E. Chupis, Sov. Phys. Usp. 25, 475 (1982).
- ³⁴I. Sosnowska, W. Schäfer, W. Kockelmann, K. H. Andersen, and I. O. Troyanchuk, Appl. Phys. A **74**, s1040 (2002).
- ³⁵I. Sosnowska, T. Peterlin-Neumaier, and E. Steichele, J. Phys. C 15, 4835 (1982).
- ³⁶J. R. Teague, R. Gerson, and W. J. James, Solid State Commun. 8, 1073 (1970).
- ³⁷J. Wang *et al.*, Science **299**, 1719 (2003).
- ³⁸ J. Li, J. Wang, M. Wuttig, and R. Ramesh, Appl. Phys. Lett. 84, 5261 (2004).

- ³⁹K. Y. Yun, D. Ricinschi, T. Kanashima, M. Noda, and M. Okuyama, Jpn. J. Appl. Phys. **43**, L647 (2004).
- ⁴⁰R. D. King-Smith and D. Vanderbilt, Phys. Rev. B **47**, 1651 (1993).
- ⁴¹D. Vanderbilt and R. D. King-Smith, Phys. Rev. B **48**, 4442 (1993).
- ⁴²R. Resta, Rev. Mod. Phys. **66**, 899 (1994).
- ⁴³J. B. Neaton, C. Ederer, U. V. Waghmare, N. A. Spaldin, and K. M. Rabe, Phys. Rev. B **71**, 014113 (2005).
- ⁴⁴A. A. Belik, S. Iikubo, K. Kodama, N. Igawa, S. Shamoto, S. Niitaka, M. Azuma, M. Takano, F. Izumi, and E. Takayama-Muromachi, Chem. Mater. **18**, 798 (2006).
- ⁴⁵ Y. Uratani, T. Shishidou, F. Ishii, and T. Oguchi, Jpn. J. Appl. Phys. **44**, 7130 (2005).
- ⁴⁶S. Ishiwata, M. Azuma, M. Takano, E. Nishibori, M. Takata, M. Sakata, and K. Kato, J. Mater. Chem. **12**, 3733 (2002).
- ⁴⁷S. J. E. Carlsson, M. Azuma, Y. Shimakawa, M. Takano, A. Hewat, and J. P. Attfield, J. Solid State Chem. **181**, 611 (2008).
- ⁴⁸ M. Azuma, S. Carlsson, J. Rodgers, M. G. Tucker, M. Tsujimoto, S. Ishiwata, S. Isoda, Y. Shimakawa, M. Takano, and J. P. Attfield, J. Am. Chem. Soc. **129**, 14433 (2007).
- ⁴⁹W. Kohn and L. J. Sham, Phys. Rev. **140**, A1133 (1965).
- ⁵⁰L. Hedin and B. I. Lundqvist, J. Phys. C 4, 2064 (1971).
- ⁵¹O. K. Andersen, Phys. Rev. B **12**, 3060 (1975).
- ⁵²O. Gunnarsson, O. Jepsen, and O. K. Andersen, Phys. Rev. B 27, 7144 (1983).
- ⁵³ V. I. Anisimov, F. Aryasetiawan, and A. I. Lichtenstein, J. Phys.: Condens. Matter 9, 767 (1997).

- ⁵⁴O. Gunnarsson, O. K. Andersen, O. Jepsen, and J. Zaanen, Phys. Rev. B **39**, 1708 (1989).
- ⁵⁵ V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44, 943 (1991).
- ⁵⁶T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano, and Y. Tokura, Phys. Rev. B **67**, 180401(R) (2003).
- ⁵⁷ F. Gao, Y. Yuan, K. F. Wang, X. Y. Chen, F. Chen, J.-M. Liu, and Z. F. Ren, Appl. Phys. Lett. **89**, 102506 (2006).
- ⁵⁸J. McLeod, R. Wilks, N. Skorikov, L. Finkelstein, M. Abu-Samak, E. Kurmaev, and A. Moewes, arXiv:0908.1581 (unpublished).
- ⁵⁹E. Z. Kurmaev, R. G. Wilks, A. Moewes, L. D. Finkelstein, S. N. Shamin, and J. Kuneš, Phys. Rev. B 77, 165127 (2008).
- ⁶⁰P. Kuiper, G. Kruizinga, J. Ghijsen, G. A. Sawatzky, and H. Verweij, Phys. Rev. Lett. **62**, 221 (1989).
- ⁶¹ V. R. Galakhov, V. V. Karelina, D. G. Kellerman, V. S. Gorshkov, N. A. Ovechkina, and M. Neumann, Phys. Solid State 44, 266 (2002).
- ⁶²M. Abbate, G. Zampieri, F. Prado, A. Caneiro, J. M. Gonzalez-Calbet, and M. Vallet-Regi, Phys. Rev. B 65, 155101 (2002).
- ⁶³ P. Kharel, S. Talebi, B. Ramachandran, A. Dixit, V. M. Naik, M. B. Sahana, R. Naik, M. S. R. Rao, and G. Lawes, J. Phys.: Condens. Matter **21**, 036001 (2009).
- ⁶⁴J. Íñiguez, D. Vanderbilt, and L. Bellaiche, Phys. Rev. B 67, 224107 (2003).
- ⁶⁵D. H. Kim, H. N. Lee, M. Varela, and H. M. Christen, Appl. Phys. Lett. **89**, 162904 (2006).
- ⁶⁶G. Catalan, Phase Transitions **81**, 729 (2008).